Low-Volume Design Formula Sheet

Plant Coefficient

 $K_c = K_s \times K_d \times K_m$

Gallons per Square Foot (day) Gallons/ft²/day = $\frac{\text{flow rate x 144 x run time}}{\text{Spacing x 60}}$

Canopy area

 $R = \frac{1}{2}$ diameter Area = 3.14 x R^2 Flow Rate Gallons per minute = <u>Gallons per hour</u> 60

Net Water Requirement (gallons per day) NWR = $.623 \times A \times K_c \times PET$

Net Water Requirement (in/hr)

 $NWR = PET \times K_c$

Gross Water Requirement

GWR = NWR / Efficiency

 $GWR = \underline{.623 \times A \times K_c \times PET}$ Efficiency

Application Rate (GPH)

GPH = no. of emitters x emitter flow rate

Application Rate (in/hr)

App. Rate = $\frac{231.1 \text{ x emitter flow rate (GPH)}}{\text{Emitter spacing (s x s)}}$

Run Time RT = $\frac{GWR \times 60}{App. Rate}$

Needed Flow per Plant Needed flow = $\frac{GWR \times 60}{Run Time}$